Over 150 Years of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity

نویسندگان

  • Yuting Liang
  • Liyou Wu
  • Ian M. Clark
  • Kai Xue
  • Yunfeng Yang
  • Joy D. Van Nostrand
  • Ye Deng
  • Zhili He
  • Steve McGrath
  • Jonathan Storkey
  • Penny R. Hirsch
  • Bo Sun
  • Jizhong Zhou
چکیده

UNLABELLED Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receiving nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. These results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. IMPORTANCE Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. By identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, this study makes fundamental contributions to predictive understanding of microbial biogeography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial scaling of microbial biodiversity.

A central goal in ecology is to understand the spatial scaling of biodiversity. Patterns in the spatial distribution of organisms provide important clues about the underlying mechanisms that structure ecological communities and are central to setting conservation priorities. Although microorganisms comprise much of Earth's biodiversity, little is known about their biodiversity scaling relations...

متن کامل

Microbial Diversity and Sensorial Properties of Malga Cheese from Trentino (Italy) after Long-Term Ageing Period

Background: Malga cheeses are made in artisanal and seasonal dairies located in the Alps. This study was carried out to determine microbial diversity and sensorial properties of Malga cheese from Trentino (Italy) after long-term ageing period. The effects of adding the Fermalga Bacterial Pools (FBP) on microbiota biodiversity of cheese were also evaluated. Methods: Populations of Lactic Acid B...

متن کامل

Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

BACKGROUND Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant dive...

متن کامل

Long-term spatial and temporal variability of ambient carbon monoxide in Urmia, Iran

One of the pillars of epidemiologic research on the long-term health effects of air pollution is to estimate the chronic exposures over space and time. In this study, we aimed to measure the intra-urban ambient carbon monoxide (CO) concentrations within Urmia city in Iran, and to build a model within the geographic information system (GIS) to estimate the annual and seasonal means anywhere with...

متن کامل

Soil Functional Operating Range Linked to Microbial Biodiversity and Community Composition Using Denitrifiers as Model Guild

Soil microorganisms are key players in biogeochemical cycles. Yet, there is no consistent view on the significance of microbial biodiversity for soil ecosystem functioning. According to the insurance hypothesis, declines in ecosystem functioning due to reduced biodiversity are more likely to occur under fluctuating, extreme or rapidly changing environmental conditions. Here, we compare the func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015